

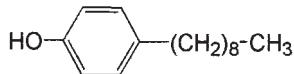
Photocatalytic Degradation of 4-n-Nonylphenol under Irradiation from Solar Simulator: Comparison between BiVO_4 and TiO_2 Photocatalysts

Shigeru Kohtani,* Shigeki Makino,[†] Akihiko Kudo,^{††} Kunihiro Tokumura, Yasuhito Ishigaki, Tsukasa Matsunaga,[†] Osamu Nikaido,[†] Kazuichi Hayakawa, and Ryoichi Nakagaki

Graduate School of Natural Science and Technology, Kanazawa University, 13-1 Takara-machi, Kanazawa 920-0934

[†]Faculty of Pharmaceutical Sciences, Kanazawa University, 13-1 Takara-machi, Kanazawa 920-0934

^{††}Faculty of Science, Science University of Tokyo, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601


(Received April 15, 2002; CL-020315)

A toxic endocrine disruptor, 4-n-nonylphenol, was degraded using a well-known TiO_2 and a visible-light-driven BiVO_4 photocatalyst under irradiation from a solar simulator. The degradation rates for both BiVO_4 and TiO_2 are comparable in air-saturated solution though surface area of BiVO_4 is much smaller than that of TiO_2 . This fact indicates that BiVO_4 has a great ability to degrade alkylphenols in wastewater under solar light.

Non-ionic surfactant alkylphenolpolyethoxylates (APOEs) have been used in a wide variety of industrial, household, and commercial applications. It should be noted that bio-degradation of APOEs in sewage treatment may generate alkylphenols such as nonyl- and octylphenols¹ which are toxic to freshwater species² and have properties of weak estrogenic activities.³ Alkylphenols have been widely distributed in rivers and lakes in some countries.⁴

In order to remove organic pollutants from environments, photocatalytic degradations have been extensively studied.⁵⁻⁷ It has been demonstrated that nonylphenol and its ethoxylated surfactants are efficiently degraded and finally mineralized to CO_2 and H_2O using TiO_2 ,^{8,9} the photocatalysis of which works only under UV light. On the other hand, BiVO_4 photocatalyst has been recently found to evolve O_2 gas by oxidation of H_2O in silver nitrate solution under visible light.^{10,11} BiVO_4 is therefore expected to possess high oxidation activity for degradation of organic pollutants under solar light.

In this letter, we report photocatalytic activity of BiVO_4 for degradation of linear alkyl 4-n-nonylphenol (NP) under visible and solar light. Comparison between BiVO_4 and TiO_2 is investigated for the following points: (1) photodegradation rates of NP, (2) CO_2 mineralization yields, and (3) O_2 concentration effects on the photocatalysis.

Structure of 4-n-nonylphenol (NP)

NP (Kanto Chemical, purity 99.5%) and TiO_2 powder (Degussa P25) were used as received. BiVO_4 powder was synthesized in an aqueous medium.¹² X-ray diffraction patterns of the synthesized BiVO_4 indicate a monoclinic scheelite structure as reported.^{10,11} BET surface areas of BiVO_4 and TiO_2 are 0.2 and 54 m^2/g , respectively. The surface area of TiO_2 is 270 times larger than that of BiVO_4 .

Figure 1 shows diffuse reflectance spectra of BiVO_4 and TiO_2 powders. It is obvious that BiVO_4 absorbs visible light (400–

525 nm) whereas TiO_2 absorbs only UV light (<400 nm). For the monoclinic scheelite BiVO_4 , the visible absorption band of BiVO_4 is assigned to the transition from a valence band formed by Bi_{6s} or a hybrid orbital of Bi_{6s} and O_{2p} to a conduction band of V_{3d} .¹⁰ The photocatalytic activity for O_2 evolution from an aqueous AgNO_3 solution is accompanied with photoexcitation of this visible band.^{10,11}

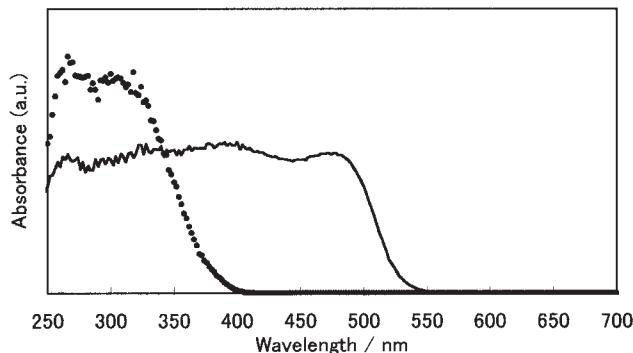
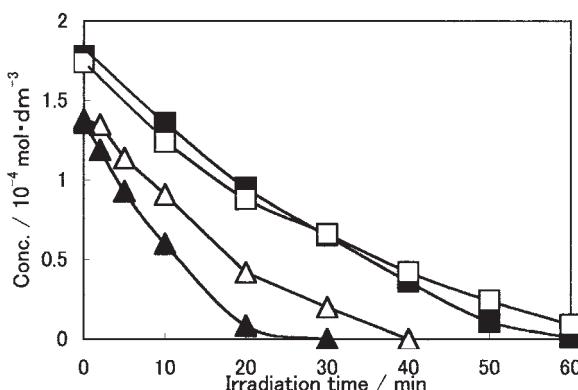



Figure 1. Diffuse reflectance spectra of BiVO_4 (solid) and TiO_2 (dotted).

NP sample solutions ($2 \times 10^{-4} \text{ mol}/\text{dm}^3$) were prepared by adding BiVO_4 or TiO_2 powder (0.2 g) to 25 cm^3 of NaOH aqueous solution (pH 13) and sealed in a cylindrical quartz cell (45 mm i.d. \times 50 mm) with a rubber septum. A solar simulator (Oriel 81192) equipped with an AM2DB air mass filter was employed as the light source. The intensity was 24 mW/cm^2 , measured by a thermopile sensor (Coherent 210). Prior to irradiation, the samples were kept stirring for 1 h in the dark.

Figure 2 indicates time courses of NP photodegradation by BiVO_4 and TiO_2 in air- and O_2 -saturated alkaline solutions under irradiation from the solar simulator. In air-saturated solution, NP is almost degraded within 1 h for both BiVO_4 and TiO_2 . The NP degradation rate for BiVO_4 is coincident with that for TiO_2 . A control experiment in the absence of semiconductor powders shows that the NP degradation was not observed within 1 h. In O_2 -saturated solution, the degradation rate for BiVO_4 is faster than that for TiO_2 as shown in Figure 2. BiVO_4 is thus more useful in the presence of sufficient amount of O_2 in solution. In the dark with the presence of BiVO_4 or TiO_2 powder, NP concentrations were slightly decreased (about 10%) after 3.5 h, which is probably due to adsorption of NP on semiconductor surface.

The NP photodegradation using BiVO_4 under visible light irradiation (>400 nm) was also examined in N_2 -, air-, and O_2 -saturated alkaline solutions.¹³ The degradation is also observed in

Figure 2. Photocatalytic degradation of NP in air- and O_2 -saturated alkaline solutions under irradiation from a solar simulator (24 mW/cm^2): BiVO_4/air (■), TiO_2/air (□), BiVO_4/O_2 (▲), and TiO_2/O_2 (△). NP concentrations were determined by a reverse-phase HPLC system equipped with Supelco TPR-100 column (4.6 mm i.d. \times 150 mm, at 308 K). The mobile phase was an acetonitrile/water (3 : 1) at a flow rate of $0.5\text{ cm}^3/\text{min}$. A chromatogram was monitored at 280 nm. Valerophenone was used as an internal standard.

air- and O_2 -saturated solutions. The photocatalytic activity is thus ascribed to photoexcitation of the visible absorption band of BiVO_4 . Assuming that the NP degradation follows pseudo-first order kinetics, rate constants in air- and O_2 -saturated solution are determined to be 0.72 and 1.62 h^{-1} , respectively. The value in O_2 -saturated solution is 2.3 times faster than that in air saturated solution. On the contrary, the rate constant in N_2 -saturated solution (0.04 h^{-1}) becomes very small compared to those in air- and O_2 -saturated solutions. These results indicate that the photodegradation of NP using BiVO_4 is sensitive to the concentration of O_2 dissolved in solution.

CO_2 and CO evolution under irradiation from the solar simulator was investigated.¹⁴ CO_2 mineralization yields for TiO_2 are monotonically increased and reached 24% (total amount of evolved CO_2 is 0.40 cm^3) after 5 h irradiation. The CO evolution is thus efficient for TiO_2 as reported by Pelizzetti et al.⁸ and Horikoshi et al.⁹ In addition, a small amount of CO evolution (ca. 0.02 cm^3) was also observed from the TiO_2 solution. However neither CO_2 nor CO gas was detected in BiVO_4 suspended solution within 5 h irradiation. This result is explained in terms of valence band position of BiVO_4 . Since the conduction band edge of BiVO_4 is located at ca. 0 V vs NHE (pH 0), the valence band edge of BiVO_4 is predicted to be at ca. $+2.4\text{ V}$ vs NHE, which is considerably negative potential compared to the valence band edge of TiO_2 (ca. $+3\text{ V}$ vs NHE at pH 0).¹⁰ Therefore, photooxidation power of BiVO_4 is lower than that of TiO_2 so that mineralization to CO_2 was not observed in the present study.

Although complete ring-opening cleavage of the NP aromatic ring is confirmed by UV absorption change in the irradiated BiVO_4 solution, photoproducts have not yet been identified. Formic and acetic acids were identified as intermediates in an irradiated TiO_2 solution.⁹ However neither formic nor acetic acid was detected in the BiVO_4 solution by means of indirect photometric ion chromatography.¹⁵ Experimental endeavors to identify photoproducts are in progress.

In conclusion, three remarkable properties of BiVO_4 are clarified on the photocatalytic degradation of NP. (1) The NP

degradation occurs upon photoexcitation of the visible band of BiVO_4 , which is strongly affected by O_2 concentration in the solution. (2) CO_2 mineralization is efficient in TiO_2 suspended solution but not observed for BiVO_4 because the potential of the valence band edge of BiVO_4 is more negative than that of TiO_2 . (3) Surface area of our synthesized BiVO_4 is much smaller than that of TiO_2 . Nevertheless, BiVO_4 shows comparable photocatalytic activity for degradation of NP under irradiation from the solar simulator. This photocatalytic activity of BiVO_4 can be improved by expanding surface area, calcinations, and loading co-catalysts.

This work was supported by Kurita Water and Environment Foundation and the Grant for Research Project on “Removal of Environmental Hormones by means of Physical and Chemical Degradation” from Kanazawa University.

References and Notes

- 1 W. Giger, P. H. Brunner, and C. Schaffner, *Science*, **255**, 623 (1984).
- 2 M. H. I. Comber, T. D. Williams, and K. M. Stewart, *Water Res.*, **27**, 273 (1993).
- 3 A. C. Nimrod and W. H. Benson, *Crit. Rev. Toxicol.*, **26**, 335 (1996).
- 4 H. Takata and R. Eganhouse, in “The Encyclopedia of Environmental Analysis and Remediation,” ed. by R. Mayers, Wiley and Sons, New York (1998), Vol. 5, p 2883.
- 5 M. R. Hoffmann, S. T. Martin, W. Choi, and D. W. Bahnemann, *Chem. Rev.*, **95**, 69 (1995).
- 6 D. S. Bhatkhande, V. G. Pangarkar, and A. A. C. M. Beenackers, *J. Chem. Technol. Biotechnol.*, **77**, 102 (2001).
- 7 Y. Ohko, I. Ando, C. Niwa, T. Tatsuma, T. Yamamura, T. Nakashima, Y. Kubota, and A. Fujishima, *Environ. Sci. Technol.*, **35**, 2365 (2001).
- 8 E. Pelizzetti, C. Minero, V. Maurino, A. Sclafani, H. Hidaka, and N. Serpone, *Environ. Sci. Technol.*, **23**, 1380 (1989).
- 9 S. Horikoshi, N. Watanabe, and H. Hidaka, *J. Jpn. Oil Chem. Soc.* (in Japanese), **49**, 631 (2000).
- 10 A. Kudo, K. Omori, and H. Kato, *J. Am. Chem. Soc.*, **121**, 11459 (1999).
- 11 S. Tokunaga, H. Kato, and A. Kudo, *Chem. Mater.*, **13**, 4624 (2001).
- 12 Aqueous equimolar $\text{Bi}(\text{NO}_3)_3 \cdot 5\text{H}_2\text{O}$ and NH_4VO_3 solutions (0.4 mol/dm^3) containing HNO_3 (1.84 mol/dm^3) were prepared separately. After these two 100 cm^3 solutions were mixed, 7.5 g of urea was added. The mixed solution was then stirred at 363 K for 8 h . The BiVO_4 precipitation formed by the hydrolysis was washed by water, filtered, and dried at 318 K .
- 13 A 500-W Xenon arc lamp with a Toshiba L42 glass filter was used as visible light source (9 mW/cm^2).
- 14 The CO_2 and CO evolution during irradiation was followed by gas chromatography. After irradiation from the solar simulator, 0.25 cm^3 of 2.5 mol/dm^3 sulfuric acid was added to the sample through the rubber septum by use of a syringe. When thermal equilibrium was reached at 298 K , CO_2 and CO evolved in head space were collected by a gas-tight syringe through the rubber septum and analyzed using a gas chromatograph equipped with a Porapak Q column, a methanizer, and a flame-ionized detector with N_2 as the carrier gas.
- 15 K. Hayakawa and M. Miyazaki, *Bunseki* (in Japanese), **1991**, 47. The anion exchange MCI GEL SCA02 column (6.0 mm i.d. \times 50 mm) was used at 298 K . The mobile phase was a potassium hydrogen phthalate aqueous solution (0.5 mol/dm^3) at a flow rate of $1\text{ cm}^3/\text{min}$. A chromatogram was monitored as negative peaks at 280 nm .